Physiology and Rates in Microbial Oceanography (PRIMO)
Bell, T. (2019) Next-generation experiments linking community structure and ecosystem functioning. Environ. Microbiol. Rep., 11, 20–22.
​
Boyd, P.W., Doney, S.C., Eggins, S., et al. (2022) Transitioning global change experiments on Southern Ocean phytoplankton from lab to field settings: Insights and challenges. Limnol. Oceanogr., 67, 1911-1930.
​
Cooley, S., Schoeman, D., Bopp, L., et al. (2022) Ocean and Coastal Ecosystems and their Services. In: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Pörtner, H.-O., Roberts, D.C,. Tignor, M., et al. (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 379-550
​
Falkowski, P. G., Fenchel, T., and Delong, E. F. (2008) The microbial engines that drive Earth’s biogeochemical cycles. Science, 320(5879), 1034–1039.
Karl, D. M. (1980) Cellular nucleotide measurements and applications in microbial ecology. Microbiol. Rev., 44, 739–796.
Inomura, K., Omta, A. W., Talmy, D., et al. (2020) A mechanistic model of macromolecular allocation, elemental stoichiometry, and growth rate in phytoplankton. Front. Microbiol., 11, 86.
McCain, J. S. P., Tagliabue, A., Susko, E., et al. (2021) Cellular costs underpin micronutrient limitation in phytoplankton. Sci. Adv., 7, eabg6501.
Meiler, S., Britten, G. L., Dutkiewicz, S., et al. (2022) Constraining uncertainties of diazotroph biogeography from nifH gene abundance. Limnol. Oceanogr., 67, 816–829.
​
Meiler, S., Britten, G.L., Dutkiewicz, S., et al. (2023) Challenges and opportunities in connecting gene count observations with ocean biogeochemical models: Reply to Zehr and Riemann (2023). Limnol. Oceanogr.
Melzner, F., Podbielski, I., Mark, F. C., et al. (2022) The silent loss of cell physiology hampers marine biosciences. PLoS Biol., 20(5), e3001641.
​
Moran, M. A., Kujawinski, E. B., Schroer, W. F., et al. (2022) Microbial metabolites in the marine carbon cycle. Nat. Microbiol., 7, 508–523.
​
Nunn, B. L., Faux, J. F., Hippmann, A. A., et al. (2013) Diatom proteomics reveals unique acclimation strategies to mitigate Fe limitation. PLoS One, 8, e75653.
​
Oremland, R., Capone, D., Stolz, J. et al. (2005) Whither or wither geomicrobiology in the era of 'community metagenomics'. Nat. Rev. Microbiol., 3, 572–578.
​
Strzepek, R. F., Nunn, B. L., Bach, L. T., et al. (2022) The ongoing need for rates: can physiology and omics come together to co-design the measurements needed to understand complex ocean biogeochemistry? J. Plankt. Res., fbac026.
​
Walworth, N. G., Lee, M. D., Fu, F. X., et al. (2016) Molecular and physiological evidence of genetic assimilation to high CO2 in the marine nitrogen fixer Trichodesmium. Proc. Natl. Acad. Sci. USA., 113, E7367–E7374.
​
Wong, C., Ballegooyen, K., Ignace, L., et al. (2020) Towards reconciliation: 10 Calls to Action to natural scientists working in Canada. FACETS. 5(1), 769-783.
​
Zehr, J. P. and Riemann, L. (2023) Quantification of gene copy numbers is valuable in marine microbial ecology: A comment to Meiler et al. (2022). Limnol Oceanogr.
​
Zehr, J. P. and Capone, D. G. (2020) Changing perspectives in marine nitrogen fixation. Science, 368,
eaay9514.